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RADIATION PRESSURE ON A 
SPHEROIDAL SATELLITE 

James R. Lucas 
Geodetic Research and Development Laboratory 

National Ocean Survey, NOAA 
Rockville, Maryland 

ABSTRACT. The pressure of solar radiation on a spherical 
balloon satellite is proportional to its cross-sectional 
area. However, there is evidence to indicate that the 
PAGEOS satellite has not remained spherical, but is more 
nearly G prolate spheroid that is rotating about its minor 
axis. If this is true, the force of solar radiation incident 
upon its surface must be expressed in terms of the shape 
of the surface and its orientation to the sun. Furthermore, 
radiation reflected from the surface of an aspherical 
balloon will impart an additional force which can be large 
enough to significantly perturb the orbit. By starting 
with basic equations for the radiation forces on a flat 
plate and kitegrating over the sunlit portion of the surface, 
exact expressions are obtained for both the incident and 
reflected radiation forces on a stationary. prolate 
spheroidal satellite. These expressions are then used to 
develop power series expansions for the radiation forces 
on a rotating spheroid. 

INTRODUCTION 

The perturbing effects of solar radiation pressure on the motions of large 
balloon satellites have been known for a number of years. Perturhation formulas 
for spherical satellites have been published by several authors (Musen 1960, 
Bryant 1961, Kozai 1963). To the first order these formulas have been quite 
satisfactory in explaining the motions of satellites such as ECHO I. However, 
studies by Fea and Smith (1970) show that both 1963-30D (DASH 2) and 1966-56A 
(PAGEOS) have undergone ,accelerations, apparently related to radiation pressure, 
which cannot be explained by the first-order theory. 

Photoelectric photometry studies of PAGEOS conducted by Vanderburgh and 
Kissell (1970) indicate that PAGEOS is no longer spherical, but has gradually 
deformed until its shape is more nearly approximated by a prolate spheroid. in 
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addition the spheroid appears to be rotating about an axis which is precessing 
about the satellite-sun vector. This information led Smith and Fea (1970) to 
develop a modification to the classical theory, which takes into account both 
the varying cross-section presented to the incident radiation by a rotating, 
aspherical balloon and the force imparted to the satellite when radiation is 
reflected from its surface. Smith and Kissell (1971) showed that this modified 
theory provides a much better fit to the observed periodic fluctuations in the 
mean motion of PAGEOS during a period (July through October 1969) when the 
orbit was partly in the earth's shadow. 

A computer program based on this modified theory was developed a t  the 
Geodetic Research and Development, Laboratory, and tests with this program 
(Lucas and Chovitz 1972) verified, in part, the results of Smith and Kissell. 
However, the discrepancies between observed orbital positions and those predicted 
by the program were still excessively large. Upon re-examination of Smith and 
Fea's work it appeared that they had perhaps oversimplified their mathematical 
model by making two major assumptions: (1) That the effective direction of 
radiation reflected specularly from the balloon's surface is determined by Snell's 
law applied to the incident ray that passes through the center of the satellite, 
and (2) that the magnitude of the flux reflected in this direction approximates 
that which would bz reflected by a sphere of surface area equal to that of the 
spheroid. While these assumptions appear reasonable, the results of rough 
calculations were to the contrary. 

Since the modified theory of Smith and Fea was believed to be sound, it 
was decided to attempt a more rigorous mathematical formulation of the problem. 
In this report exact expressions are developed for the radiation forces acting 
on a stationary prolate spheroid and one that is rotating about its major axis. 
Force equations are also developed for a spheroid rotating about a minor axis, 
but in this case exact expressions are not possible, so series approximations 
are employed. 

DEVELOPMENT OF THE BASIC FORCE EQUATIONS 

Consider a flat plate located in space above the earth's atmosphere and 
oriented normal to the sun's rays. The plate will be constantly bombarded by 
a stream of photons from the sun. The intensity of this solar power, which will 
be denoted by I ,  varies inversely as the distance to the sun's center. I t s  value 
a t  one astronomical unit, called the solar constant and denoted by I,,, is reported 
by Thekaekara and Drummond (1971) to be about 0.135 watts/cm2. 

Since force is power divided by velocity, the force per unit area exerted on 
the plate by incident solar radiation is I / c ,  where c is the velocitg of light. The 
direction of this force is obviously the same as the direction of the incident 
radiation. 

Of the radiation striking the plate, some fraction, R, will be reflected and 
the remainder will be absorbed and reradiated. Of the reflected radiation some 
fraction, Rs, will be reflected specularly and the remainder, RD, will be reflected 
diffusely. By Newton's third law the force imparted to the plate by specularly 
reflected radiation will be equal in magnitude to the incident force multiplied 
by As and will be directed opposite to the direction taken by the reflected 
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radiation. 
If we assume that the diffusely reflected radiation obeys Lambert's reflection 

law, the resultant force due to reflection of this type will have magnitude equal 
to the incident force multiplied by 2RD/3 (Georgevic 1971). This force will be 
directed away from the sun and act along the normal to the plate. 

Although it would not be difficult to treat diffusely reflected radiation force 
by the procedure to be developed in the following sections, this report is directed 
toward balloon satellites that have been coated with materials of high specular 
reflectivity. Therefore, throughout the remainder of this report we will assume 
that, for the surfaces considered, the specular albedo, R,, is very much larger 
than the diffuse albedo, RD. Forces arising from diffusely reflected radiation can 
then be neglected and reflection, from this point forward ,  will be understood to 
mean specular reflection. 

Furthermore, throughout this report the following approximation will be 
used: Solar radiation will be considered to arive a t  a satellite surface as parallel 
rays, i.e., the sun will be treated as a point source a t  infinity. 

Incident , 
Radiation I 4 Reflected 

I Radiation I + 

Figure 1.-Radiation forces on a flat plate. 

Now we will consider the more general case of a flat plate inclined to the 
incident radiation as shown in figure 1. Let j be tl unit vector pointing toward 
the sun and n a unit vector normal to the surface of the plate. If the area of 
the plate is A ,  then the projection of this area normal to  the incident radiation 
is A cos @, where cos @ is the dot product of the unit vectors j and n. Hence, 
the force imparted to the plate by incident solar radiation will be 

(1) 
I FI = -A( j -n) ( - j ) .  
C 

A large fraction, Rs, of the incident radiation striking the plate will be reflected 
specularly in the direction of the unit vector IC. By Newton's third law this 
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reflection will exert a force. 

which acts in a direction opposite to that taken by the reflected radiation. 
I t  is interesting to note that, if the plate is normal to the incident radiation, 

then j and k coincide, and the total force is the sum of F, and FR acting in the 
direction of -j. If Rs is close to unity, the total force can be nearly twice the 
incident force. 

Any regular surface can be considered to be composed of an infinite number 
of flat plates of infinitesimal dimensions, each characterized by a unique pair 
of unit vectors n and k. The radiation forces acting on such a surface can be 
obtained by integrating the force equations, (1) and (2), over the sunlit portion 
of the surface. For a surface of revolution, such as a prolate spheroid, it is 
convenient to choose a coordinate system whose z-axis coincides with the axis 
of revolution, and define the surface by 

z = u cos A. y = u sin A. and z =f(u), (3) 

using the polar coordinates u and A. 

example, Courant 1937) 
The surface area of any figure of revolution can be obtained from (see, for 

Substituticg (4) into (1) and (2) provides the following general expressions 
for the forces exerted on surfaces of revolution by incident and reflected radiation: 

and 

where the integration is limited to the sunlit surface. The unit vectors n and 
k are subscripted u.X in these expressions as a reminder that these vectors are 
functions of the integration variables. 

RADIATION FORCES ON A SPHERE 

I t  is R well known fact that the radiation force on a spherical satellite is 
equal to I / c  multiplied by the cross-sectional area of the spherical surface. 
However, many users of this formula have never stopped to consider whether 
or not the force exerted by radiation reflected from the surface of the satellite 
is included in this expression. I t  is worthwhile, therefore, to consider the 
radiation forces acting on a sphere before attacking the more complex problem 
of a spheroidal surface. 
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Figure 2.-Vectore associated with radiation forces 
at a point on the surface of a sphere. 

For simplicity we choose a coordinate system with origin 3t the center of 
the sphere and z-axis pointing toward the sun. The orientation of the other 
two axes is immatericl. If r is the radius, the spherical surface is given by the 
parametric equations, 

z = u cos A, y = u sin A, and z = (r2-u2)'l2. ( 7 )  

Figure 2 shows the unit vectors associated with an arbitrary point on the 
surface. By our choice of coordinate system the unit vector j is paraHel to the 
z--axis and, therefore, 

for all values of u and A. From (7 )  

Hence, substituting (8) and (9) into (5 )  along with the appropriate limits we have 

F,= - i j ~ ~ 2 u S D l u d u d h = - - n r 2 j .  I 
C C 

which is exactly I / c  multiplied by the cross-sectional area. If the standard 
formula is correct, the reflected radiation force must be zero, as will now be 
shown. 
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From the figure it can be see,n that the unit vector that defines the direction 
of the reflected radiation from any point on the surface is 

sin 2f3 cos A 

ku,A = (1 1) 

Each component of the reflected force vector is obtained by substituting the 
corresponding component of k into (6). Since the x and y components of k 
contain cos A and sin A,  respectively, by inspection 

2n f 

F R r  = -Rs'jo jou sin 2f3 cos A du dA = 0, 
C 

and 

FRY = - R ~ : J ~  J u sin 2f3 sin A du dA = 0, 
0 

as one might expect from consideration of symmetry. Using 

2u2 
cos 2f3 = 1-2sin2f3 = I-- 

T2 ' 

the z component is 

Hence, for E spherical satellite the resultant force due to reflected radiation is 
zero, and the standard formula has been shown to be correct. 

RADIATION FORCES ON A PROLATE SPHEROID 

A prolate spheroid is generated by revolving an ellipse about its major axis. 
If the axis of revolution is chosen to be the z-axis and the semi-major and 
semi-minor axes of the ellipse are u and b, respectively, then the surface is 
given by the parametric equations 

(15) 
U 

x = u cos A, y = u sin A, and z = - ( b ' - ~ ' ) ' / ~ .  
b 

Differentiating we have 

au - -  -- dz 
dU b(b2-u2)'I2 

and [ +( d z ) 2 ] I / 2  = [ b4+a2e2u;]l/2 
b2(b2-U2 ' 
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where e is the eccentricity of the spheroid. 
The area of the surface can be obtained by a direct substitution of (17) 

into (4), but for reasons that will become apparent when the force integrals are 
developed, it is advantageous to use z rather than u as an integration variable. 
Solving (15) for u in terms of z provides 

from which we can obtain, substituting into (17), 

a( u2- e2z 2, [ 1 + ( 3 ] 1 / 2  = bz 

and 

Substituting (18) and (19) into (4) yields for the total surface area 

A = -z!r U Jao(u2-e2z2)l/2dz dh, 

which can be written 

A = !Jo2* U Joa(u2-e2z2)'/Pdz dh + - U so s - /a2 -e2z2 j1 /Pdz  dh 
2Tr 0 

= (1-e2).!/2 J-y(a2-e2z2)1/2dz dh. 

Integration Limits 

Derivation of the radiation forces exerted on a spheroid is considerably 
more complicated than for a sphere, because the cross-sectional area presented 
to the incoming radiation depends on the orientation of the unit vecior j, which 
points toward the sun, to the major axis of the spheroid. For convenience we 
will choose a coordinate system in which z is the major axis of the spheroid, x 
is in the plane defined by z and j and forms an angle 6 (Sn/2) with j, and y 
completes a right-handed system. This coordinate system is illusbated in figure 
3, which also shows the unit vectors that will be used in the derivation. 

From the definition of the angle 6 ,  

and from the figure it can be seen that the unit normal to the surface a t  any 
point forms an angle a with its projection parallel to the zy-plane. Therefore, 
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cos a cos A 

n,,x = [ co;:; A ] .  

Since the derivative d z / d u ,  given by (le), is the slope of the tangent to the 
surface, 

Figure 3.-Vectors associated with radiation forces 
at a point on the surface of a prolate spheroid. 

which provides 



Substituting (24) into (22) and forming the dot product with (21) obtains 

(25) 
( u ~ - z ~ ) ' / ~ c o s  e cos A + z(1-e2)%in e 

fn,,x = cos /3 = ( a 2 - e 2 2 2 ) 1 / 2  

The radiation forces are obtained by integrating over the sunlit surface, 
whose boundary is an ellipse defined by the intersection of the spheroidal surface 
by the plane  TI,,^ = 0. As shown in figure 4, the boundary ellipse passes through 
the point' ( z  = 7, A = n) and all of the surface above the plane z = 7 is in sunlight. 
The area of this portion of the surface can be obtained from 

AI = ( i-e2)1/2/+w -w /:(a2-e2z2)1/2dz dh. 

a \  

Figure 4a.-Cross-section of spheroid 
showing the intersection of the 

surface with the plane, cos p = 0. 

Figure 4b.-Geometrical significance of 
quantities used in defining the 

integration limits. 

The boundary also passes through the point ( z  = -7, h = 0) and none of the 
surface below the plane z = -7)  is in sunlight. For each value of z, between the 
planes z = r )  and z = -7, the boundary passes through a pair of points, h = y ( z )  
and h = - y ( z ) .  Hence, the area of the sunlit surface between these planes is 
given by 
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A2 = ( I - p i ) ' / 2 ~ - ~ ~ - ~ ( u 2 - e 2 z 2 ) l / 2 d z  dA. 

Setting z = q and A = m in (25) and equating to zero obtains 

a cos e 
7 = (1 -e2sin28) 112. 

Setting A = y in the same equation and again equating to zero we have 

z(  1 -e2)'l2sin e 
( u ~ - z ~ ) ~ / ~ c o s  e '  c o s y = -  

and, since y is less than or equal to n/2, 

( 1 - e2sin28) 7 O- z2)  
sin y = (1 -~os'y) ' /~ = 

( u ~ - z ~ ) ' / ~ c o s  e 
Hence, the total area of the sunlit surface is the sum of (26) and (27) where 
the integration limits are obtained from (28) and either (29) or (30). 

However, throughout this section a number of integrals of the same form 
will be encountered. In order to simplify notation we will let SI, operating on 
a function of the integration variables z and A, represent the sum of double 
integrals: 

S, l f (Z ,h ) ]  = I+' --* p ( z , h )  dz dh + 1-y S-:f(z,h) dz dh. (31) 

In some instances the argument of this operator will be of the form f(z) cos A, 
in which case the first double integral will be zero. Therefore, extensive use will 
be made of a second operator, 

to express the relationship: 

Sllf(z) cos h] = 2S21f(z) sin y]. (33) 
Using this notation, the area of the sunlit surface of the spheroid can be 

written 

A = (1-e2)1i2Sl[(u2-e2z2)1/2] = (l-e2)Sl[z csc a]. 

Then, using ( 5 )  and (61, the force equations become 

I F,= --(1-e2))jSl[zcscacos~] 
C 

and 
I FA = -R,-(1-e2) S,[z k,,x csc a cos 81, 
C 

(34) 

(35) 

and all that remains is to evaluate the necessary integrals. 
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Incident Radiation Force 

The force of incident radiation impinging on the surface of a prolate spheroid 
is given by (34). Using (25), the operator in this equation can be written - 

sl [z  csc a  COS^^] = COS 8 sl[z cot a COS A] + sin 8 s,[z] 
= 2cos e S2[z cot a sin 71 + sin e sl[z]. (36) 

The expression for sin y ,  equation (30), can be substituted into the argument of 
the first operator in (36) to produce a form that can be found in any book of 
ictegral tables. The second operator, however, represents the sum of two double 
integrals of which one is a standard form, but the other requires a rather lengthy 
solution. Therefore, a detailed procedure for evaluation of these operators is 
provided in Appendix 1, and only the results are presented here. They are: 

and 
na3cos e 

b( 1 -e2sin28)1/2' 
S2[z  cot a sin y ]  = 

Substituting these expressions into (36) and that result into (34) yields for the 
force of incident radiation: 

(39) 
I F, = -- J' nab( 1-e2sin28)1/2. 
C 

This equation stakes that the force 
of incident radiation is I / c  multiplied by 
the area of the projection of the spheroid 
onto a plane normal to the incident 
radiation. This can be seen from figure 
5.  The ellipse formed by cutting the 
spheroidal surface by the plane j n  = 0 
will have semi-axes a' and b and will 
intersect the spheroidal surface at  the 
point ( z  = 7 .  h = n) as previously stated. 
The projection of this ellipse onto a plane 
normal to the radiation will be an ellipse 
with semi-axes a" and b ,  where 

a'' = a'cos r# cos a + akin #J sin a. 

But 

a COS e 
a'sin r# = 71 = 

( ~ - e ~ s i n ~ ~ ) ' / ~ '  

a( 1 -e2) sin e 
( 1-e2sin28)1/2' 

a'cos r# = 

11 

I 
1 a" 

Figure 5.-Ceometric determination of the 
force of incident radiot'on. 



and from the figure it can be seen that u = 7r/2 - 8. Hence 

u'' = a(1-e2sin28)1'2, 

which verifies that a purely geometrical approach will yield exactly the same 
result that was obtained by integration, Le., equation (39). 

Reflected Radiation Force 

The force exerted on the spheroid by radiation reflected from its surface 
can be obtained from (35), but first the components of the unit vector IC must 
be expressed in terms of the integration variables. Figure 6 shows a sphere 
whose center is located a t  an arbitrary point on the surface of the spheroid. 
The unit vector j, as previously specified, lies in the rz-plane and forms an 
angle 8 with the z-axis. The unit normal, n, forms an angle a with its projection 
onto the q-plane and an angle /3 with the vector j. Then, by Snell's law, 
radiation striking that point on the surface will be reflected in the direction of 
I C ,  which lies on the great circle through j and n and forms an angle 2g with j .  

t 

Figure &-Spherical triangles used in deriving 
the direction cosines of the unit vector k. 
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From the spherical triangle formed by j, k, and the z-axis we have, by the 
cosine law, 

cos p = cos 8 cos 2/3 - sin 8 sin 28 cos n. (40) 

Also by the cosine law, using the spherical triangle formed by j, n, and the 
z-axis, we have 

cos f l =  sin 8 sin a + cos 8 cos a cos h 
and 

sin a - sin 8 cos 8 
cos 8 sin /? cos R = 

which, substituted into (41), after some manipulation yields 

I 

2 cos 8 (cos /? - sin e sin a) 
cos p = - cos e 

COS e 
= 2 COS p COS a COS x - cos e. (42) 

Next, using the spherical triangle formed by j, k, and the z-axis, the law 
of cosines produces 

cos 4 = sin 8 cos 28 + cos 8 sin28 cos R = 2 cos /? sin a - sin 8. (43) 
The final component of k can be derived from the spherical triangle formed 

by k and the y and z-axes. Since one side of this triangle is n / 2 ,  the sine law 
yields 

cos v = sin # cos (. 
Using the sine law and the adjacent triangle formed by j, I C ,  and the z-axis, we 
have 

sin 2/? sin R 
sin # cos < = 

But 
cos a sin h 

sin R = 
sin/? ' 

and, therefore, 

cos v = 2 cos /3 cos a sin A. 

Collecting (42), (43), and (44), the unit vector becom.es 

(44) 

(45) 

cos p 2 COS COS a COS A - COS e 
k = [ L; ] = [ 2 cos /3 cos a sin h 

2 cos /3 sin a - sin 8 

Substituting (45) into (35), the components of reflected force can be written 
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I 
F R E  = -Rs- (1-e2)S , [zcscacos /3cosp]  

C 

I 
= -Rs-(l-e2)12 sin28 Sl[z sin a cos a cos A] 

C 

+ 2c0s2e si [ z C O S ~ Q  cot a C O S ~ A ]  - cos2e s, [Z cot a COS A] 

+ 4sin e cos e S, [ z cos2a cos2A] - sin e cos e S, [ 21 

I 
FRY = -Rs-( 1-e2) S,[z csc a cos f i  cos u] 

C 

I 
= -~~- ( i - e2 ) [2  sin20 s , [ z  sin a cos a sin AI 

C 

+ 2cos20 SI [ z cos2a cot a sin A cos2A] 

+ 4sin e cos e S, [2 cos2a sin x cos A] , 1 
and 

I 
F A z  = -Rs-(1-e2) S,[z csc a cos /3 cos {] 

C 

= -As- ( 1 -e2) 2 sin2e S, [ z sin2a] - sin20 S, [ 21 
C I I  

+ 2cos20 S,[Z cos2a cos2A] - sin 8 cos 8 S,[z cot a cos A] 

+ 4sin 8 cos 8 SI [ z sin a cos a cos A] . 1 
In these three equations the operator SI appears thirteen times with nine 

different arguments. Since Si represents the sum of two double integrals, it 
appears that we are faced with a long and tedious exercise in integral calculus. 
However, this task can be brought into manageable proportions by taking 
advantage of certain properties of the operator SI to simplify the above 
expressions. One of these properties has already been stated in (33), and the 
following list can be derived by integrating over A: 

S,lf(z) sin A] = 0, 

S,lf(z) sin h cos A] = 0, 

S,V(z)  sin A cos2h] = 0, 

S,lf(z) cos2A] = -S,lf(z)] + S,[f(z)  sin y cosy]. 
1 
2 

and 
4 2 
3 3 S,lf(z) cos3A] = -S2[f(z)  sin y] + -s2[ f (z )  sin y cos2y]. 

Furthermore, from (24) and (29) we have 
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cosy = -tan 8 tan a, 

which obtains 

S21f( 2) sin y cos y ]  = -tan e S21f( 2) tan a sin y] 

~ , l f ( z )  sin y cos'y] = tan28 ~ , [ f ( z )  tan2a sin y]. 
and 

Using these identities the components of reflected radiation force become 

I 
F R c  = -&-( 1 -e2) 14 sin% S2[ z sin a cos a sin y ]  - 2 cos20 S,[z cot a sin y ]  

C 

8 4 
3 3 

+ -cos2e S,[Z COS% cot a sin y ]  + -sin28 S,[z sin a cos a sin y] 

+ 2 sin e cos e S , [ Z  cos2a] - 4 sin2e S,[Z sin a cos a sin y] 

- sin e cos e S, [ 23 , 1 
Fm = 0 ,  

and 

2 sin28 S , [ z  sin2a] - sin26 S,[z] 

+ cos2e S,[Z cos2a] - 2 sin e cos e s2[2 sin a cos a sin y] 

- 2 sin 0 cos t9 S,[z cot a sin y] + 8 sin 8 cos 8 S,[z sin a cos u sin y] . 1 
The number of different operator arguments can be further reduced by simplifying 
and collecting terms, after which the above equations become 

2 
3 

sin 8 cos 8 S,[z] + - cos20 S,[z cot a sin y] 

4 
3 

+ -( 1-3 cos28) S2[2 sin a cos a sin y] - 2 sin 8 cos 8 S,[z sin'a] 

and 

(1-2 sin") S,[z] - 2 sin 0 cos S,[z cot a sin y] 

+ 6 sin 8 cos 0 S,[z sin a cos a sin y] - (1-3 sin20) S,[z sin'u: 
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Since the spheroid is symmetric about the zz-plane, which contains the 
satellite-sun vector, the reflected force perpendicular to this plane is zero as 
expected. The force components parallel to the x and z-axes are now functions 
of only four integral operators, of which two have already been encountered in 
deriving the incident force and are evaluated in Appendix 1. The remaining two 
operators represent integral forms of much greater complexity. A detailed 
procedure for their evaluation is provided in Appendix 2. The results obtained 
in Appendix 1 (written here in slightly different form) and Appendix 2 are: 

nu2U sin 8 
v '  Sib1 = 

nu2 cos 8 
2uv ' 

S2[z cot a sin y ]  = 

S,[Z sin a cos a sin 71 = --nu2 ( U2;"v" + u2-UV) 
e4cos 8 ' 

and (49) ( U3sin 8 I 2U2W) 
e2V e4 ' 

S,[Z sin2a] = --nu2 

where 

and 
V+U sin 8 
1+ sin 8 

w =  In( ). 
Substituting (49) into (46) through (48), the reflected force is given by 

I FR = -Rs--na2 
C 

where 

P,sin 8 

u3sin28 u cos28 2Ussin28 4U4W sin 8 2U3 
V 3v e2V e4 3e2V 

-- + + + 9, = 

4U2(U2-UV) 2U3COS28 4u" 4u3v - + +-- -  
3e4 cos28 e2V e4 e4 

uv 4u3v 4u3v 4uyu2-uV) 4u4 
3 +g-- -  e4 3e4cos28 e4 

= -  + -(1+Wsin8) 

+ 4U4( 1 + W sin e)] (52) 16 4uy u2-uV) 
= - (-4+-e2-e4)UV - 

e4 ' [  3 3 cos28 

16 



and 

U3 2U3sin28 Ucos28 Us 2U'W 3Ussin28 +-  + -- - --- pa=-- - 
V V V e2V e4sin8 e2V 
6U'Wsine 3U3cos28 6U' 6U3V - - -- e4 e2V e4 + yr- 

2u3v 6u3v 6u4 2u4w + - - T ( l + W s i n  e) + - = -uv- - 
e2 e4 e e4sin e 

(6-8e2+e4)UV- 6U' l+Wsin 0 - - 
3 sin 0 (53) 

This completes the development of forces exerted on a prolate spheroid. 
Both the incident force, equation (38), and reflected force are expressed as 
functions of parameters that specify the size and shape of the spheroid and the 
direction of the sun. However, there are two disturbing features about the 
expression for reflected force. First, the presence of eccentricity raised to the 
fourth power in the denominators of (52) and (53) gives the impression that the 
reflected force will become infinitely large as the eccentricity of the spheroid 
approaches zero, i.e., if the surface is spherical. If this were true, disregarding 
the physical consequences, we would be faced with an inconsistency, because it 
was shown in an earlier section that the total force of radiation reflected from 
a spherical surface is equal to zero. This inconsistency does not exist, however, 
because i t  can be shown, using 1'Hospital's rule, that both components of reflected 
force teiid to zero as the eccentricity of the surface approaches zero. 
Furthermore, by the same technique, it can be shown that the unfortunate 
presence of cos0 in the denominator of the middle term of (52) does not cause 
any problem, since the numerator of this term will go to zero as the denominator 
approaches zero. 

Secondly, while equations (52) and (53) provide exact expressions for the 
components of reflected force, their complexity precludes any immediate insight 
into the nature of the force. I t  is, therefore, advantageous to develop series 
expansions for these expressions. (1) The 
magnitudes, and even the directions, of the force components are m-uch more 
easily appreciated from the series representations, (2) From the series expansions 
it can readily be seen that the limits of these force components do indeed go 
to zero as the spheroidal eccentricity approaches zero, and (3) When we treat 
the case of a spheroid rotating about a minor axis, in the next sectfon, it will 
be necessary to use series, because the forces are noi represeniable in closed 
form. 

This will serve three purposes: 

Series Development 

P,  and f, can be developed as a power series in the small parameter e2. 
If the series are desired to the ith-order in e2, it is neccessary to carry terms 
to the order i + 2 in developing series for the expressions enclosed in brackets 
in (52) and (53), because both of these quantities will be divided by e4. Due to 
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space limitations the procedure will be illustrated by developing only the first 
three terms of the series expressions for P, and P,. We begin by writing U and 
V RS the power series 

(54) 

The product 
multiplication of 

UV, which appears in both (52) and (53), is obtained by direct 
these series to form 

e2 e4 

2 8 
ee 
16 

U V =  1 - -(I+ sin28) - -(1-2sin28 + sin%) 

(56) - -( 1 - sin28 - sin48 + sin%) - - a .  

If we subtract (56) from U2 = 1-e2, we have a series in which all terms are 
divisible by 1-sin28. After division we have 

U ~ - U V  e2 e4 ee 
-- - -- + - (1 - s in2~)+- (1 - s in4B)+ . - - ,  
cos28 2 8  16 

which will be required for the middle term of (52). 

exactly divisible by 1 +sin 8 .  Hence, 

V+U sin 8 
'= 1+sine  

Now, if (54) is multiplied by s ine and added to (55) ,  the resulting series is 

e2 e4 

2 8 
= 1 - -sin e - -(sin 8 - sin% + sin%) 

ee 

16 
- -(sin e - sin% + sin38 - sin48 + sin%) - - a .  

From this equation it is easy to see that when 8 = 0, Q = V =  1, and when 8 = n j 2 ,  
Q = U. Therefore, 0 < Q 4 1. and we can use 

1 1 
2 3 

W =  1nQ = (Q-1) - -(Q-l)'+ -(Q-ly - a  

which obtains 

Since the series for W contains the factor sin 8 ,  then both 1 + W  sin 8 and 
W/sin8, as well as (56) and (57), are power series in e2 in which the coeffieients 
are polynomials in sin28. Furthermore, the degree of these polynomial coefficients 
is less than, or equal to, the power to which e2 is raised in the term in which 
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they occur. Therefore, it is merely a matter of bookkeeping to perform the 
multiplications and additions indicated in (52) and (53). One method of handling 
this bookkeeping is shown in Tables 1 and 2. 

From the tables it can be seen that the coefficients of all terms in eo, e', 
and e' are zero so that, after division by e4, only terms in e2 and higher powers 
of e remain. By carrying along higher-order terms it  can be shown that both 
f, and f, are representable by power series in e2 in which the coefficients of 
the ith-order terms are polynomials of degree i in sin28. The first three terms 
of these series are 

e2 e4 

6 48 
1 ~ , = - ( 1 + s i n ~ 8 ) - - ( 1 + 1 0 s i n ~ 8 - 3 s i n ~ 8 )  

ee 9 - -( 1 + sin'8 + 3 sin48 - -sin%) - . . 
48 5 

and 
e2 e4 
6 48 

P,  = --(3- sin2@ + -(3+ 2 sin28 + 3 sin48) 

ee 3 9 
48 5 5 

+ -(3- sin'8 - -sin48 + -sin%) + -. 

(59) 

I t  is immediately apparent that both P, and f, are zero whefi e is zero. 
Therefore, the reflected force, given by (51), is consistept wi th  the results 
previously obtained. When e is greater than zero, P, is greater than zero and 
P ,  is less thhn zero for all values of 8. Hence, when 8 = 0, F R ,  = 0 and FAs is 
negative. The reflected force and the incident force both act in the direction 
of the negative z-axis, and the approximation used by Smith and Fea (19'70) 
for finding the direction of the resultant reflected force obtains the correct 
result.. In this case the 
reflected force acts in the direction of the positive z-axis, while the incident 
force is directed along the negative z-axis. This is in direct contradiction to 
the approximation of Smith and Fea, because the ray passing through the center 
of the spheroid would be reflected back along the positive z-axis and, therefore, 
the reflected force would be expected to act in the direction of the negative 
z-axis. 

In fact it can be shown, using either the exact expressions (52) and (53) or 
the series representations (59) and (eo), that the approximation of Smith and 
Fea does not obtain the correct direction for the reflected force except when 8 
is equal to zero. However, since the incident radiation force is so much larger 
than the reflected force, the resultant will be in error by only abmt  20% in the 
worst case. This discrepancy is considerably less for a spheroid which is rotating 
about a minor axis, as will be seen in the next section. 

In summary, the force of incident radiation on a stationary, prolate spheroidal 
satellite is given by 

However, when 8 = n/2, FR2 = 0 and F R r  is positive. 

I FI = --na2UV 
C 

COS e 
0 

sin 8 

I 
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Table 1. -Series development of P,. 

Series Used in Developing P,: 

U"UV + (4-8e2++4e4)( 1 + w sin e): 16 4 
3 3 cos2e Summation to Obtain Series for e4P, = (-4+-e2-e4)UV - -( 1-e") 

1 1 1 1 1 5 1 1 1 5 N 
0 2 2 4 4  4 4 32 8 16 8 32 

-4uv= -4 + 28s + &%since +-e4 - e'sinee +--o'sin40 + -ea - 1eaainee - -eaain40 + -e%inae + -en - -e%inIe - -ebin40 - -e%inae + -e%in'e 

2 4  2 - -e'+ 1 -ebinee+ 1 5e%in4@- 1 ,e%iiae 1 

1 1  + -e'- 1 -e%inLB+ 1 ~ e % i i %  1 

3 3 - -ea + -e%inee - -e%in48 

+ -ea+ -e%in% 

16 16 -8p --e4rin~e 6 
3 3 3 3  3 3  3 

-eWv = - e4 

+--sWV= +-ee 

8 4 2 2  

1 1 5 
98 98 96 96 I - -0'- 5 --obinee + -e%in4e + -e%inC + -e1sin4e 1 1  --ea 1 

12  12 --e4 +-e4sin% 4 cf-w + 2 -- - = 
3 cosee 3 6 6  

1 
12 

- -ebin4e 1 + -e1 
12 

1 1  
6 6  

+-e 4 ecf-uv - E  + -ea- -e%in% 
3 C M I e  

1 1 1 - -ebinC 5 - -e%in48 9 - -e%inC 3 - -e%inae 5 
32 32 32 32 

1 
2 2 4 6 4 - 2 e % i n ~  --e4aine0 -ba in40  - -e%in% - -easin4~ - -e%ina8 +4(i+irsin8) = +4 

1 1 1 
2 3 

+ -e%inb + -e%in't~ + ,e%inC + e%inC + easin4t) -8ee(l+Waine)= - 8ee + 4e4ainee 

+4e4(l+#sine) = + 4e4 - 2e%inLB 
- ze%inl@- 1 se%in4e 1 

- 
1 5 1 

48 24 16 
- -e' - -e%inC + -e%in4@ 1 1  

6 
+ -ea+ ge%in% e4p, = 



Table 2.--Series development of P,. 

Series Used in Developing Pa: 

1 1  1 1  1 1 1  1 1 5 1 1 1 5 
2 2  8 4  8 18 18 I 8  18 128 32 84 32 128 

1 1 1 5 3 3 5 
128 128 128 128 

u y =  1 - -e* --e.Sbee --e4 +-e4sinae --e'sin'e ----ea +-&in% +-e%in% --e%in% -ea + -e%in% + -e%in% + -e%inC ---e%inb 

--e%in'8 --e%in% --e%in% ---e%tna@ ---Basin% --e%in% --easi& 1 1 1 
2 8 18 24 1F: 

--eesinC -ie4s~n*@ --e4sin% 

--e4 --ebin*O 

l+WsinB= 1 

1 1  1 5 3 3 
18 24 18 128 128 128 128 

-ee--e%inq --e%in'e -5eCin .e  --ea --e%in% --e%in% 1 1  W 1 -= - -0s 
sin e 2 8 8  

W 
Summation to Obtain Series for e4Pz = (6-8e2+e4)UVt (-6+12e2--6e4)(l+Wsin 4) + (2-4e2+2e4) - - sin e - 

1 1 1 
8 4 

- -ea- - - -ea+ -e%in%- ie%in% ' 'e%inSe 
2 2  

+e'W = + e4 

3 1 3 + -e%ine@ 15 + -e%in% 0 + -e%in% 9 + -e%in% 15 
84 84 84 84 + -e%inb + -e%in% + -e%inb 3 3 

4 4 8 4 8 + &%bee +-e4sin% +-e4sin% - B ( I + ~ S I D B )  = -8 

3 1 3 - -e%in% - -e%in48 - -e%in% + i~ee ( l+ r s in@)  = + 12ee - 8e4sing0 - i e c i n b -  ;e%in40 4 2 4 

--Be4( 1 + W sin e) = - 8e' 
0 

+ 3ebinb  

1 1 1 
4 6 4 + -ea+ -e%in*@+ -eCin4@ 1 1  

2 
+ -ea+ ge%in% + ze4 

W -4eL- = 
sin e 

1 1 1 
16 24 

+ -ea+ -e%inze + -e%in% 1 1  
18 e4P, = - -ea+ 2 8  -e%inC 



where U and Yare given by (50). The force due to radiation reflected from the 
surface of the satellite is 

P,CO~ e 
FR=-Rs-rra2 I [ 0 1, 

C 

P,sin 8 

where P, and P, are given exactly by (52) and (53) or by the series (59) and 
(60). 

RADIATION FORCES ON A ROTATING PROLATE SPHEROID 

In the last section expressions were developed for the forces exerted on a 
stationary prolate spheroid. These equations were developed in a coordinate 
system in which the z-axis is the major axis of the spheroid and the x-axis is 
in the plane defined by the z-axis and the sun. If the spheroid rotates about 
its major axis, there is no reason why this coordinate system cannot remain 
fixed in space. Therefore, the force equations given for a stationary spheroid 
can be used in the case of rotation a'bout the major axis. They will, however, 
be writien in a form, that is better adapted to perturbation equations. When 
the spheroid rotates about a minor axis, however, the zz-plane, which was 
supposed to contain the satellite-sun vector will rotate away from that vector, 
and the assumptions on which the force equations of the previous section were 
based no longer hold. Obviously, for this case, new force equations must be 
derived, but first we will treat the case of rotation about the major axis. 

Rotation About the Major Axis 

In developing perturbation formulas for solar radiation it has been common 
practice to express the radiation force in the (X,Y,Z)  coordinate system where, 
X is the direction of the sun, Z is the direction of the pole of the ecliptic, and 
Y completes a right-handed system. This is a logical choice because forces 
given in this system can be expressed 'in satellite orbit coordinates by a standard 
transformation involving the ecliptic longitude of the sun A. obliquity cf the 
ecliptic E, right ascension of the ascending node, inclination of the satellite orbit, 
and argument of perigee. 

Referring to figure 7 it can be seen that any vector in the (z,y,z) coordinate 
system, which was used for developing the force equations, can be transformed 
into the (X ,Y ,Z)  system in two steps. First, a negative rotation about the y-axis 
through the angle 8 brings us into the intermediate system (X',Y,Z), i.e., 

z cos 8 + z sin 8 

) [ ] = [ -x sin 0; z cos 6 1. 
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Ecliptic Pole 
2 Spin Axis 

Vernal Equinox 

Sun 

Figure 7.-Coordinate systems used in describing 
the radiation forces on a prolate spheroid 

rotating about its major axis. 

Then, a positive rotation about the X-axis through an angle -$, 

completes the transformation provided that 8 and -$ can be obtained in terms 
of known quantities. 

Assume that the position of the spin axis, in this case the z-axis, has been 
determined by some means, perhaps photoelectric photometry. If the spiil axis 
position is given in terms of ecliptic latitude 8, and ecliptic longitude A,, then 
from the figure and a little spherical trigonometry we can obtain 

cos 8, sin A, cos A - cos 6, cos A, sin h 
cos 8 

sin -$ = 1 

sin 8, 
cos*= - 

cos 8 ' 
and 

sin 8 = cos 29 = cos 8, cos A, cos A + cos 8, sin A, sin A, 

where cos 8 = sin29 can be obtained from its co-function, since 8 is by definition 
less than or equal to n/2. 
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Of course it is unlikely that the position of the spin axis will be given in 
the ecliptic system. But, if the right ascension a, and declination 6, of the spin 
axis are known, we can use the standard transformation given in any astronomy 
text, 

and 

cos 8, cos A, = COS 6, COS a,, 

cos 8, sin A, = cos 6, sin a, cos E + sin 6, sin E ,  

sin 8, = -cos 6, sin a, sin E + sin 6, cos E ,  

(66) 

which can be substituted into (65) to obtain the required rotation components 
in terms of known angles. 

The force of incident radiation can now be expressed in the (X,Y,Z)  system 
by applying the transformations (63) and (64) to equation (61). However, after 
applying the first rotation it is found that the Y and 2 components are both 
zero so that the second rotation is inconsequential. Hence, 

where Pi = UV. Applying these transformations to (62) we find that the reflected 
radiation force will be 

where 

and 

I FR = -Rs-na2 
C 

P X  

P,cos $ 

Pzvsin $ 

Pzl = (Pz- Pz) sin e cos e. 
The forces are now given in the desired coordinate system, but for consistency 

with the force equations that will be developed in the next subsection, it is 
preferable to express the forces as functions of 29, the angle between the sun 
and the spin axis. Using (59) and (go) ,  Px and P, can be obtained as functions 
of 8 and then, since 19 is the complement of 8,  we have 

e2 3 e4 

3 2 6 
pX = --(I - -sin2d) + -(I - 3 sinad + :sin4191 

ee 21 
15 16 

+ -( 1 - 3 sin2$ + 3 sin4g - -sin%) + ., 

and 
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Pp =2sinI9cosI9 

1 ee 3 3 
15 4 8 

+ -( 1 - -sin26 + -sin4$) + - - - . 

Then the radiation forces on a prolate spheroid that is rotating about its major 
axis are (67) and (68) where the P's are given by (69)through (71) anu $ and 19 
are obtained from (65). 

Rotation About a Minor Axis 

First, assume that the spheroidal satellite is stationary and define the 
coordinates (z,y,z) as before. The vector j ,  as before, forms an angle 8 with the 
z-axis and lies in the sz-plane, where z coincides with the major axis of the 
spheroid. Let the z-axis be the spin axis and redefine the coordinate system 
such that the z-axis is in the plane defined b y j  and the spin axis. By definition, 
8 is the angle between J' and the spin axis and z is no longer tied to the major 
axis of the spheroid. This redefinition does not change anything as long as the 
spheroid remains stationary. However, after the spheroid has rotated through 
some angle 0,  as shown in figure 8,  the major axis no longer coincides with 2, 

but has rotated to z'. 
Let us now define an instantaneous coordinate system (x',y',z') such that z' 

is the major axis of the spheroid, the z'-axis is in the plane defined by z' and 
j ,  and the y'-axis completes a right-handed system. This is the same coordinate 
system used for deriving the force equations for a stationary spheroid, except 
that the angle between x' and j is 8'. Therefore, (61) and (62) provide the 
incident and reflected forces, respectively, in the (s',y',z') system if 8 is replaced 
by 8' wherever it appears in either of these equations. 

From the figure i t  can be seen that 

cos 6 
and cos 8' = - 

cos A" 
sin 8' = sin 6 cos w 

Substituting these expressions for sin 8 and cos 8 ,  respectively, in (61) and (62) 
yields 

and 

where 

cos 6 
cos A' 

0 

sin 6 cos w 

cos 6 P=, - 
cos A' 
0 (73) 



Figure 8.-Prolate spheroid in its initial position and after a rotation 
about the z-axis through an angle w .  

e2 e4 

2 8 

ee 
16 

pr8 = 1 - -( 1 + sin2$ cos2a) - -( 1 - 2 sin2$ cos'w + sin4$ COS~CJ) 

- -( 1 - sin% cos% - sin44 c0s40 + sin% cos%) - . . - ,  

e2 e4 
6 48 

- -( 1 + sin2$ cos'w + 3 sin4$ C O S ~ W  - -sine$ cos%) - - e ,  

P ~ ,  = -( 1 + sin2$ cos2w) - -( 1 + IO sin2$ cos2w - 3 sin4$ C O S ~ W )  

ee 9 
48 5 

and (74) 

e2 e4 
6 48 

PzB = -(3 - sin2d  COS"^) + -(3 + 2 sin2$ cos2w + 3 sin4$ C O S ~ W )  

ee 3 9 
48 5 5 

+ -(3 - sin2$ cos'w - -sin4$ C O S ~ W  + --sine$ cose,) + . - -. 

We can now transform the force vectors into the fixed (z,y,z) system by a 
negative rotation about z' through the angle A' (which brings z' into z), followed 
by a negative rotation about z through w ,  or 
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1.1 1 x'cos A' + y'sin A' rx'l r 
x'cos w sin A' + y'cos w cos A' - z'sin w . (75; 

r'sin w sin A' + y'sin w cos A' + z'cos w 1 
Since the x' components of both forces contain cosh' in their denominators, the 
z components will be independent of A' while the y and z components will contain 
tanh' as a factor. I t  is desireable to eliminate A' altogether by substituting for 
tanh' a function of the other angular variables. From the figure, using Napier's 
Analogies, we obtain 

tan A' = tan 29 sin w .  

Substituting this expression after the transformation (75) has been applied to 
equations (72) and (73) we have 

cos d 

sin 19 

and 

Px.cos d ["I = -Rs-na2 ; [ (P=,- Pzm)  sin .19 sin w cos w ] . 
Having expressed the forces in the (z,y,z) system, we have now crrived at  

essentially the same configuration as at  the beginning of the previous subsection. 
Now, however, the x-axis is the spin axis. From figure 9 it can be seen that a 
negative rotation about y through 19 will bring 5 into X ' ,  but this must be followed 
by a rotation about X' through rn to complete the transformation to the (X',Y',Z') 
system. The second rotation merely changes the signs of the second and third 
components of the vector, so the complete transformation will be given by (63). 
if 8 is replaced by 29 and the signs of the second and third components of the 
final vector are changed. Applying such a transformation to (76) a2d (77) we 
have 

(77)  

PxBsin IJ sin'o + Pz8sin cos2w FRz 

[; FIX- ] =  -;na'PI' [ : ] 
and 

p2, - (P=, - pZ,) sin*IY cos'w 

-(Psa- Pz,) sin 19 sin w cos w 

(p2,- P,,) sin IY cos IJ cos'w 
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Vernal Equinox 

Sun 

Figure 9.-Coordinate systems used in describing 
the radiation forces on a prolate spheroid . 

rotating about a minor axis. 

Using (74) it appears that the components of reflected force, in the (X',Y,zl) 
system, are proportional to 

P~ = P=, - (P=,- P=,) sin2+ cos'w 

e2 e4 
= -( 1 - 3 sin229 cos2w) - =( 1 + 6 sin229 cos2w - 15 sin4$ c0s4w) 

6 

- -(I - 3 sin2d cos20 + 3 sin4d C O S ~ W  - -sin9 cos%) - - *, 
ee 21 
48 5 

P ,  = -(P=,- Pa,)  sin + sin w cos w 

2e2 e4 

3 12 
= -- sin + sin w cos w + -(sin + sin w cos w + 3 sin2g sin w cos2w) 

ee 3 
12 5 

+ -(sin + sin w cos w + -sins+ sin o C O S ~ U )  + * - - , 

and 
P~ = (P=,- P * ~ )  sin 19 cos + cos2w 

e4 

e" 3 
12 5 

cos'w - -(cos2w + 3 sin2+ C O S ~ U )  
= s in+cosd(  p 12 

1. - -(cos2w + -sin4d cosew) - - 
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But w ,  whose functions appear so frequently in these equations, has so far been 
treated as  a fixed, but unknown, angle. In actuality w is constantly changing 
as the spheroid rotates about its spin axis. If the spheroid is rotattng slowly 
about its spin axis a t  a constant rate, it might be possible to determine the 
spin rate and phase angle by photometry, and then express the forces as functions 
of time. In all likelihood, however, the rotation period will be much smaller 
than the orbital period. If this is so, we can be satisfied with the mean value 
of the forces, the mean being computed over one rotation of the spheroid. 

Using an overbar to represent the mean value over one rotation of a function 
of w ,  we have for the term in the incident force 

e' 1 e4 3 
= 1 - --(I + -sin2$) - y ( 1  - sin2$ + -sin4$) 

2 8 

ea 1 3 5 - Is( 1 - -sin2$ - -sin4$ + -sine$) - - -, 
2 8 16 

and for the terins in the reflected force equation 

- e' 3 e4 45 
P x  = -(I - -sine6) - -(I - 3 sin26 - -sin%) 

6 2 48 8 

- -(I - -sin2d + -sin46 - -sinad) - . - -, 
ea 3 9 21 
48 2 8 16 

P u  = 0 

and 
- 
Pz6 = 2 sin 6 cos 6 

ea 3 
48 8 

- - ( I  + -sin'$) - a ) .  

(79) 

The final transformation (64) is now used to express the forces in the desired 
coordinate system, (X,Y,Z) .  The incident force is again 

and the reflected force is 

I F R = - R s - r a 2  
C 
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where F,l Fx, and Fzl are given by (78) through (80) and the angles 29 and 7c, are 
obtained from (65). 

With the exception of equation (69), series representations of the force 
components have been employed throughout this section. I t  should be pointed 
out that the exact expressions could have been used exc!usively in treating 
rotation about the major axis. This was not done because the mathematics 
involved would be more tedious and the resulting equations would be far less 
appealing. But, assuming the existance of a spheroidal satellite which is rotating 
about its major axis, if the various parameters were known with sufficient 
precision to warrant the extra effort, and if its eccentricity were so large as to 
cause slow convergence of the series, then it is possible to derive exact expressions 
for the radiation forces. On the other hand, if exact expressions had been used 
in treating the case of rotation about a minor axis, elliptic integrals would have 
been encountered when we attempted to average the forces over a rotation of 
the spheroid, and we would then have been forced to resort to series. Closed 
form expressions are not possible for this case. 

If the situation is further complicated by the spin axis precessing about 
the satellite-sun vector, as is suspected in the case of PAGEOS, no major 
modification of the equations developed in this section is required. The positions 
of the spin axis would have to be monitored over a period of time, and from 
these data and equations (65) the rate of the precession angle w could be 
determined. Then, instead of using w as a fixed angle in the force equations, it 
would be treated as a linear function of time. 

Precession of the spin axis about any axis other than the satellite-sun 
vector would further complicate the force equations, but would not present any 
insurmountable difficulty. This circumstance is treated by Smith and Fea (1970). 
On the other hand, nutation of the spin axis would introduce periodic variations 
in both 19 and the precession rate, which could'not be described mathematically 
without further knowledge of the force, or forces, from which they arise. A 
treatment of spin axis nutation is beyond the scope of this report. 
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APPENDIX I. EVALUATION OF INTEGRALS ASSOCIATED WITH INCIDENT FORCE 

Evaluation of S2[z cot a sin y ]  

Equations (23) and (30) provide cot a and sin y ,  respectively, as functions 
of the integration variable z.  Substituting these expressions into the argument, 
the operator becomes 

a(1 -e2sin2e)1/2 +r) SJz cot a sin y ]  = J-, ( $ - z ~ ) ~ / ~  d z .  
b cos 8 (83) 

This integrand can be found in any book of integral tables. For example Pierce 
and Foster (1956), formula 127 gives 

or 

Substituting into (83) we have 

na3cos e 
2b( 1 -e2sin2~)1/2' 

S,[z cot a sin y ]  = 

Evaluation of S l [ z ]  

From the definition, equation (31). the operator represents the sum of double 
integrals 

S , [ z ]  = s-y lva z d z  dh + I-: s_:" z d z  dh 

The drst integral in this expression is straightforward, but the second must be 
handled by parts, i.e., 

2 y z d z = y z 2 -  z 2 d y .  s s 
For the integration limits, a check of equations (29) and (30) shows that when 
z = 7 ,  y = n, and when z = -q, y = 0 .  Therefore, 

2 s_:" y z  d z  = nq2 - Iom z2 d y ,  
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or, substituting into (86) we have 

SI [ 23 = flu2 - JOw z2 d y .  

I t  is possible to express z2 as a function of y and evaluate the remaining 
integral directly, but it is simpler to perform a change of integration variable. 
Using the standard formula for differentiating the arccosine function: 

dY d ab tan 8 - = -cscy - cosy = 
dz dz ( ~ ~ - z ~ ) ~ / ' s i n  y'  

where the term on the right is obtained by differentiating (29). Now using (30) 
we have 

Theref ore. 

which does Rot seem to simplify the task appreciably. 
can be written as the difference of two simpler forms using 

However, this integral 

dz - a2 dz z2 dz - 
(a2-z2)(72-z2) 112 - (a"- 22)(72-  2") 112 ( 7 )  2- 2) 112 ' 

Both of these forms can be found in integral tables, but if we solve (88) for dz 
as a function of dy, and substitute into the first term we have 

Pierce and Foster (1956), formula 130, gives 

Hence 

nab sin 6 
( 1-e2sin28)1/2' 

so* z2 dy = nu2 - 

which substituted into (87) yields 
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APPENDIX 11. EVALUATION OF INTEGRALS ASSOCIATED WITH REFLECTED FORCE 

E v a l u a t i o n  of S2[ 2 sin a cos a sin 71 

Substituting equations (24) and (30) into the argument of this operator, 
sild using the definition (32) we have 

S2[z sin a cos a sin y ]  = - dz,  (93) 

where 
U = (1-e2)'l2 and V = ( l -e2sin28)1/2.  

This integrand can be put into more tractable form by eliminating both z2 and 
the radical from the numerator. First, we can use 

But the second step, which removed the radical from the numerator, produced 
a term with z2 in its numerator. We can now use 

which substituted into the above expression produces 

a2(a2-e2q2) +r) dz 
(94) - 

e4 J-,, w e 2 z 2 )  ( 7 2 -  z 2 ) 1 / 2 '  

The first two of these integrals were evaluated in Appendix I. equations (84) 
and (go), and for the third we can use formula 239 of Pierce and Foster (1956) 
which is 

1 z ( a2- e "7 ") 
2 2 1/2 tan-' a(rl 2- z 2 )  112 - - dz S (a2-e222)(+22)1/2 - a(a2-e r )  

When the limits are employed, it is found that the denominator in the arctangent 
argument is zero for both limits, but the numerator is positive when z = q  and 
negative when z = -7. By integrating over the range from -r) + e to r )  - E and 
taking the limit as E approaches zero we can be assured that 
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Substituting (84). (go), and (95) into (94) obtains 

and from (93) 

na2u COS e ma2( u2- uv) 
2e2V e4cos e ' 

Sz[z sin a cos a sin y ]  = - 

Evaluation of S,[z sin'a] 

Again we have a sum of double integrals 

SI [ z  sin2a] = 1-y Jqa z sin2a d z  dh + z sin's d z  dh 

+1) 

= 27r jqa z sin2a d z  + 2 J-v y z  sin2a dz.  (97) 

The second term can be integrated by parts and in the process provides some 
simplification. Let q represent the indefinite integral 

q = J z sin2a d z ,  

and we can write 

y z  sin2a dz = yq  - 1 q dy .  

As was pointed out in Appendix I, when z = v. y = n, and when z = -q, y = 0. 
Since q is the indefinite form of the first integral in (97), using (98) and employing 
these limits obtains 

S,[z sin2a] = 2n q(a) - 2 q dy. Son (99) 

Now, 'io evaluate q we can substitute (24)  to obtain the integrand tis a 
function of z ,  and then use a change of variable. Let p = z2. Then dp = 22 d z ,  
and we have 

Formula 31 of Pierce and Foster (1956) gives 
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1 
uz-e2p e4 

- - [a' - ezp - a21n(az-e2p)J. 

Since p = z2 we have 

U2 
g = - [az - e'z' - u21n(u2-e2z2)], 

2e4 

which substituted into (99) yields 

In a2U2 - - JOw dy 
nn2U2 na2U2 na2U2 S,[z sin2u] =- - - - - 

e4 ez e4 e4 

'' z'dy + JoW ln(a2-e2zz) dy. 

Integration of the fourth term shows that it cancels the first term, and the 

+7 e4 

fifth term is an integral that has already been evaluated in (91). Hence 

S, [ z s in '~]  = - -- In(azUz) + - a2U2 JOw ln(a2-e2z2) dy, (100) 
rra2u3sin e rra2U2 

e2V e4 e4 

and we are left with a single integral which, unfortunately, is not in a very 
convenient form. The best approach appears to be to express the integrand as 
a function of y. To this end we square equation (29) and solve for 

a2cos2e COS'? 

u2sin2e + cos2e C O S ~ Y  ' 
z' = 

which is employed to obtain 

a"e222 = a2U2sin20 + a2cos20 cos2y - a2e2cos20 cos2y 
U2sin20 + cos2e cos2y 

d( 1 - cos2e sin'y) 

While this is not a very appealing expression, its logarithm can be written as 
the sum of four logarithms of which two are independent of y end the other 
two are of similar form. Hence sow ln(a2-e2z2) dy = n In a' - n In sin28 + In( 1-cos28 sin'y) dy sow 

cos2e 
cos'y) dy. 

U2sin28 
- sow 1n(l+ 

Neither of these two forms can be found in tables of indefinite integrals, but in 
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the definite integral section of Gradshteyn and Ryzhik (1965) formula 4.226.2 
states that  

1 +( 1 + A ) ' / d  

2 '  
JOT In( 1 +A sin") dx = In( 1 +A cos'z) dx = 2n In 

where A 1 - 1. Obviously -cos2Q 2 - 1 and since 8 S n/2, U-2cot28 2 - 1. Hence 
1 + sin 8 

2 '  
Jaw In( 1 - cos2B sin2y) d7 = 2n In 

and 
cos28 Usin 8 + (U2sin2d + cos2e)1/2 

cos'y) d7 = 2n In 
U2sin28 2U sin 6 

= 2n In 

JOT In( 1 + 

Usin 8 + V 
2U sin 8 ' 

Substituting these expressions into (101) obtains 

Iow ln(u2-e2z2) d7 = n In u2 - n In sin2B + 2n In( 1 + sin 8 )  

- 2n In(V + U sin 8 )  + 2n In U + 2n In sin 8 

2n = n In u2U2 - V + U sin 8 )  
1 + sin 8 ' 

and from (100) 

nu2U3sin 8 - 2nu'~' V + u sin 8 )  S,[z sin'a] = - 
e'V e4 1 + sin 8 
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